
Microphysiological systems (MPS) are two- or three-
dimensional cellular platforms that are designed to 
recapitulate the physiology and function of the human 
body in vitro.1,2 These systems are also sometimes 
referred to as organ-on-a-chip technologies or in 
vitro organ constructs. MPS are helping to broaden 
our mechanistic understanding of disease and have 
numerous applications in biology and medicine. In this 
infographic, we take a closer look at these systems, 
how they came to be and discuss key applications, 
advantages and challenges.
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Evolution of MPS – Key milestones
The development of MPS has been driven by advances in several technologies, including microfluidics, 
tissue engineering, bioprinting and human cell culture.3,4,5,6

Why are MPS so attractive?
Interest in MPS is growing for several reasons, largely it is driven by the need for improved predictive 
models to address the increasing costs and high attrition rates seen in drug discovery.4,13

Most notably, MPS can closely recapitulate aspects of human physiology and organ function.14

They can overcome many shortcomings associated with traditional in vitro cell culture models such as:1 

•	 Difficulties maintaining concentration gradients

•	 Inefficient diffusion

•	 Difficulties incorporating mechanical and shear 
forces

•	 Insufficient interstitial flow

•	 Perfusion challenges

•	 Cyclic changes of nutrients, metabolites and pH

•	 Inability to replicate the heterogeneous tissue  
microenvironment 

In addition, they can reduce the need for animal models15 and address  
associated challenges, including: 

•	 Cross-species specificity 

•	 Lack of relevant animal models for some rare diseases

•	 Ethical concerns

Together, these factors make MPS attractive tools  
for a range of applications.
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MPS challenges
However, despite the attraction, creating and using MPS can present several challenges.1,16,17,18

Key applications 
DRUG SCREENING 
MPS are an ideal platform for testing the safety of drug 
compounds. They can produce a precisely controlled 
geometrical, physical and biochemical microenvironment 
that simulates drug response,14 providing researchers with 
pharmacokinetic and pharmacodynamic information. 

These systems can be used during drug discovery stages 
of development to identify from several promising “high-
quality” leads, which ones warrant further investigation 
and optimization. MPS can also be used as preclinical 
models to further scrutinize the properties of the drug 
candidate to ensure its efficacy and safety before it is  
tested in human subjects. 

Drugs can either be tested using single-organ chips, or 
culture chambers within multi-well plates, to investigate 
their effects in a particular tissue or they can be 
tested in multi-organ MPS to predict a drug’s effects 
in a wider system that more accurately represents the 
interconnected nature of the human body. 

DISEASE MODELING 
MPS can be used to help to unravel the mechanistic understanding of a particular disease and identify 
potential therapeutic targets. Multi-organ MPS can be created by interconnecting single-organ models 
to reproduce complex multi-organ interactions. 

PERSONALIZED MEDICINE 
MPS can be used to explore the effects of drugs using patient-derived tissue. These systems can help 
to identify targeted therapies for specific individuals or subgroups of patients to ensure the best 
response and highest safety margin.24,25 

MICROBIOME 
The microbiota living within the human body have 
been shown to play key roles in human health and 
disease. This understanding has driven research into 
deciphering host–microbiome interactions.26 

MPS are being designed to mimic interactions 
between microorganisms and host tissue in the 
human gut, liver and brain.27

Other emerging applications include the use of MPS to investigate  
infectious diseases,  reproduction and development, and  

environmental contaminants and toxins.28

Lung-on-a-chip7 Liver-on-a-chip8 Blood vessels-on-a-chip9 

Brain-on-a-chip10 3D-printed organ-on-a-chip 
with integrated sensing11

Body-on-a-chip12  

Mini-brain systems can be used 
to reconstruct aspects of major 
neurological disorders19

Cardiac systems can be used to 
study changes to the myocardium 
that are often associated with 
cardiovascular disease20

The liver microenvironment can be 
simulated to explore alterations 
and key features at various stages 
of disease21,22

Interconnected MPS can be used 
to mimic bidirectional gut–kidney 
crosstalk which is thought to play a 
key role in chronic kidney disease23
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